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Abstract

Numerical schemes for systems with multiple spatio-temporal scales are investigated. The multiscale schemes use

asymptotic results for this type of systems which guarantee the existence of an effective dynamics for some suitably

defined modes varying slowly on the largest scales. The multiscale schemes are analyzed in general, then illustrated on a

specific example of a moderately large deterministic system displaying chaotic behavior due to Lorenz. Issues like

consistency, accuracy, and efficiency are discussed in detail. The role of possible hidden slow variables as well as ad-

ditional effects arising on the diffusive time-scale are also investigated. As a byproduct we obtain a rather complete

characterization of the effective dynamics in Lorenz model.
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1. Introduction

Computational techniques for dynamical systems evolving on widely separated time-scales have received

a lot of attention recently (for a review see [8]). Consider

_X e ¼ f ðX e; Y eÞ; X e
t¼0 ¼ x;

_Y e ¼ 1
e gðX e; Y eÞ; Y e

t¼0 ¼ y:

(
ð1Þ

Here e is a small parameter measuring the separation between time-scales, and we have assumed that the
state space can be explicitly decomposed into slow variables, X e 2 Rm, and fast ones, Y e 2 Rn (this as-

sumption is lifted below). Systems like (1) arise from molecular dynamics, atmosphere science, materials
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science, etc. They are challenging for numerical computations because a time-step of the order of e is

necessary to resolve the fast variables Y e; therefore a total number of steps of the order of e�1 is required to

simulate the evolution of the slow variable X e.
In [30] a numerical procedure was designed to overcome the computational difficulties caused by the

separation of time-scales. The procedure uses standard asymptotic results for systems like (1) (see e.g.

[17,18,26,27,31]) which state that, in the limit as e! 0, the slow process X e converges to the solution of the

equation

_X ¼ F ðX Þ; Xt¼0 ¼ x: ð2Þ

Here

F ðxÞ ¼
Z
Rn
f ðx; zÞlxðdzÞ; ð3Þ

where lxðdzÞ is the invariant measure of the fast process considered at fixed X e ¼ x:

_ZeðxÞ ¼ 1

e
gðx; ZeðxÞÞ: ð4Þ

Both lxðdzÞ and ZeðxÞ depend on x parametrically. Eq. (2) holds provided that the dynamics in (4) is

ergodic and the expectation in (3) exists. Thus, the expectation in (3) can also be expressed in terms of a

solution of (4) as

F ðxÞ ¼ lim
T!1

1

T

Z T

0

f ðx; Zeðt; xÞÞdt: ð30 Þ

When e is small, it is natural to try to use the simpler equation in (2) to approximate the slow process in

(1). But this requires one to estimate the expectation in (3), which is nontrivial. Two possibilities come to

mind. One is to make some simplifications on the dynamics of the fast variables under which the measure

lxðdzÞ can be estimated semi-analytically. This is the approach that was followed e.g. in [22–25]. Another

possibility is to estimate lxðdzÞ and the expectation in (3) via numerical simulation of (4). This idea is at the

core of the method proposed in [30]. More specifically, this method proposes a class of multiscale numerical
schemes with the following structure:

(1) A macro-solver for (2) gives the desired evolution of the slow variables X � X e on the O(1)-time-scale.

The choice of macro-solver is flexible, but as a rule it requires to estimate F ðX Þ. Each time this is nec-

essary, one uses:
(2) A micro-solver for (4), whose choice is also flexible and which gives evolution of the fast variables Ze on

the OðeÞ-time-scale; and:

(3) An estimator to evaluate the expectation in (3) for F ðX Þ from the data generated by the micro-solver.

Algorithms with this structure fit within the general framework of the heterogeneous multiscale method

(HMM) proposed in [7] (see also [6]).

The multiscale schemes gain in efficiency over direct numerical methods for (1) because the dynamics of

the fast variables has to be resolved only on a small subinterval of the total interval of time over which

the dynamics of the slow variables is computed. Indeed the expectation in (3) can be estimated from the

evolution of the fast variables on their own time-scale, and this calculation converges independently of the

scale separation in the original dynamics. Thus the multiscale schemes have a cost independent of e in

the limit as e! 0, unlike direct numerical methods for (1) whose cost increases as e�1 in this limit. Fur-
thermore, unlike the traditional methods developed for stiff ODEs or differential algebraic equations (see

e.g. [2,10–13,19]), the multiscale schemes also apply in the context of dynamical systems with stochastic
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effects. In [9] a thorough analysis of the convergence and accuracy properties of these schemes is presented

for situations when the fast process is governed by a stochastic differential equation.

In the present paper we will investigate the usefulness of the multiscale schemes when applied to de-
terministic systems with chaotic behavior. Systems of this type arise commonly in applications and it is

usually not known whether they meet the assumptions underlying the results in [9]. As a specific example of

one such system we will study variants of a model proposed by Lorenz [20], hereafter referred to as L96.

The following topics will be investigated, first in general, then using L96 as a test system.
1.1. Methodology and seamless multiscale schemes

Many systems with time-scale separation do not come in a nice form such as (1) where slow and fast
variables are explicitly separated. Rather, one is often given a system of equations like

_U e ¼ hðU e; eÞ; U e
t¼0 ¼ u; ð5Þ

where u 2 Rp and the dependency on the small parameter e is not as explicit as in (1) (for instance e may

simply be the reciprocal of the number of degrees of freedom). Therefore it is nice that it is possible to devise

a seamless multiscale scheme for (5), provided that some suitable slow variables can be defined which obey an

effective dynamics as e! 0. This requires that a mapping uðuÞ from Rp onto Rm, with m < p exists such that

DuðuÞhðu; eÞ ¼: ef ðu; �Þ ð6Þ

for some function f which is O(1) in e. This equation actually defines e in the sense that the mapping u
should be such that

e :¼ jjDuðuÞhðu; eÞjj=jjhðu; eÞjj � 1 ð7Þ

for suitable norms, so that f in (6) is O(1). If the dynamics in (5) as e! 0 is ergodic on the family of

hypersurfaces defined by uðuÞ ¼ cst, then the variable

X eðsÞ ¼ uðU eðs=eÞÞ ð8Þ

is a slow variable for (5) whose dynamics as e! 0 on the slow time-scale s ¼ et is governed by an equation

like (2) with F ðxÞ given by

F ðxÞ ¼ lim
e!0

Z
Rp
f ðu; eÞlxðduÞ: ð9Þ

Here lxðduÞ is the invariant measure of (5) as e! 0 on the hypersurface uðuÞ ¼ x. In Section 2 we will show

that the multiscale schemes can be readily generalized to equations like (5). Eq. (9) can be estimated in a

rather seamless way at finite but small e by constraining the dynamics in (5) on uðuÞ ¼ x via projection. This
seamless version of the multiscale scheme avoids the tedious step of having to derive explicitly equations for

the fast variables Y e. This seamless version of the multiscale scheme will be used throughout this paper to

study L96, first in parameter setting where the slow and fast variables are explicitly separated (Sections 3
and 4), then on a variant of L96 system with hidden slow variables where the use of a seamless scheme is

difficult to avoid (Section 5).
1.2. Consistency, accuracy, and efficiency

How should one assess the accuracy and efficiency of the multiscale numerical schemes when applied to

large deterministic systems like L96 which display chaotic behavior? Since the behavior of such systems is
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intrinsically stochastic, it is appropriate to use statistical criteria like the invariant measure of the slow

modes or their autocorrelation functions as diagnosis for the numerical scheme. In terms of numerical

analysis, such diagnoses correspond to using weak convergence criteria on infinite time intervals. Unfor-
tunately, the properties of usual numerical schemes in this context are very poorly understood and, in

particular, their rate of convergence is not known (for results in this area see [29]). However, we will show

that it is possible to understand and predict the efficiency gain of the multiscale schemes over direct numerical

solvers via consistency analysis of these schemes. This analysis will be given in Section 2 and the results

confirmed in Sections 3–7 on the example of L96. In addition in the appendix we speculate on more

quantitative error estimates for the multiscale schemes under the assumption that certain error estimates for

the macro- and the micro-solvers are known.

The overall efficiency of the multiscale schemes depends on the efficiency of the estimator. The better the
estimator, the less computations with the fast variables are necessary, and the more efficient the scheme is.

Denoting by fZrðt; xÞgRr¼1 R independent realizations of the fast process, a possible (and standard) way to

estimate expectations like (3) is to use

~F ðxÞ ¼ 1

RN

XR
r¼1

XNþN1�1

n¼N1

f ðx; Zrðndt; xÞÞ: ð10Þ

Here dt is the micro-time-step we use to simulate the fast process, R is the number of independent re-

alizations of the fast process, N1 is the number of steps we skip to eliminate transient, and N is the number

of steps over which we perform time-averaging. The smaller these parameters, the more efficient the

multiscale scheme is. It is quite remarkable that provided the fast variables are properly initialized at every

macro-time-step, the multiscale scheme converges even when R ¼ 1 (one realization only), N1 ¼ 1 and N ¼ 1
(one step of relaxation and no time-averaging), possibly with no loss in accuracy at fixed cost compared with a

scheme with larger R, N, and N1. This property will be explained in Section 2 via consistency analysis and

illustrated on L96 in Sections 3–5, but the key to understand it is actually quite simple. N1 can be small and

even equal to 1 because when the macro-time-step Dt is small, relaxation is short since the measures of the

fast process Z conditional on the value of the slow variables X at two successive macro-time-steps are close

(OðDtÞ apart). On the other hand, when R ¼ N ¼ 1, the estimate in (10) is inaccurate. But in the scheme this

estimate is re-computed at every macro-time-step, meaning that it is re-computed for about 1=Dt times

before the slow variables X have evolved significantly. As a result the effective number of realizations of the
fast process used in the estimator (as integrated in the multiscale scheme) turns out to be proportional to

NR=Dt, which is large when Dt is small even when R ¼ N ¼ 1. This shows that the quality of the estimator

must be assessed as integrated in the multiscale scheme rather than taken as a tool to estimate the effective

forcing at each macro-time-step.

Interestingly, the consistency analysis also indicates how to use the multiscale schemes to derive modified

equations that are easier to solve than the original equations. This is especially interesting in the seamless

setting where it is not obvious a priori how to modify (5).
1.3. Spatial scale separation

Besides the time-scale separation, there may also exist two separated spatial scales when the number

of fast variables Y e is much larger than the number of slow variables X e. This situation is typical of

multiscale systems. We will show in Sections 4 and 5 in the context of L96 that the multiscale scheme

can be used with only an O(1) number of fast modes in situations when their original number is Oðe�1Þ
(Section 4) or Oðe�2Þ (Section 5). This permits one to increase dramatically the efficiency of the mul-

tiscale scheme.
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1.4. Effective dynamics and effective forcing

During the computation, the multi-scale schemes evaluate F ðxÞ automatically. Therefore the multiscale

schemes can be used as a tool to determine the effective dynamical equation for the slow modes. We will use

this capability of the multiscale scheme in the context of L96 in Sections 3–5. This will give a rather

complete characterization of the effective dynamics of the slow modes in L96, at least when the number of

fast modes grows as the time-scale of their evolution becomes faster (Sections 4 and 5).
1.5. Effects on diffusive time-scale

In principle (2) holds as a limiting equation for (1) on finite time intervals only, and stochastic cor-

rections must be included on the Oðe�1Þ-time-scale. For L96 in the parameter regimes investigated in

Sections 3–5, it turns out that these corrections are small. The reason is that L96 displays deterministic

chaos. Its behavior is already intrinsically stochastic on the O(1)-time-scale, and the small stochastic cor-

rections arising on the Oðe�1Þ time-scale have a very small effect on the long-time statistical properties of the
system. This need not always be the case, though, and we can tune the parameters in L96 in such a way that

the stochastic corrections on the Oðe�1Þ time-scale become crucial. Such situations are explored in Section 6

where it is shown how to devise a poor man’s version of the multiscale scheme which accounts for stochastic

effects.
2. Methodology

Here we describe the multiscale scheme proposed in [30] and analyze some of its properties at a general

level. The topics discussed in this section will be revisited in the context of L96 in Sections 3. We first discuss

the multiscale scheme for systems like (1) where slow and fast variables are explicitly separated. Then we

show how to devise a seamless version of the multiscale scheme which applies to equations like (5).

2.1. Basic algorithm

Let ~Xm denote the numerical approximation of X ðt ¼ mDtÞ, solution of (2) provided by the multiscale
scheme. The simplest multiscale algorithm is the following:

Algorithm 1. (Forward Euler macro-solver and estimator by ensemble-average with R realizations.)
Take ~X0 ¼ x; fZN1;�1g

R
r¼1 given; M ¼ bT=Dtc;m ¼ 0;

while m6M
~F ð~XmÞ ¼ 0;
for r ¼ 1; . . . ;R
Zr
0;m ¼ Zr

N1;m�1;

for n ¼ 0; 1; . . . ;N1 � 1

Zr
nþ1;m ¼ Zr

n;m þ dt wgð~Xm; Zr
N ;m; dtÞ;

end(for)
~F ð~XmÞ  ~F ð~XmÞ þ 1

R f ð~Xm; Zr
N1;m
Þ;

end(for)
~Xmþ1 ¼ ~Xm þ Dt ~F ð~XmÞ;
m mþ 1;
end(while)
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Here ½0; T � is the time-interval over which the evolution of the slow variables is sought, and Dt denotes
the macro-time-step. Zr

n;m denotes the approximation of the rth independent realization of

Zðt ¼ ndt; x ¼ ~XmÞ provided by the micro-solver whose micro-time-step is dt. Since any standard one-step
method can be chosen for the micro-solver (in Sections 3–5 we will use a fourth-order Runge–Kutta), we

have simply used the compact notation

Zr
nþ1;m ¼ Zr

n;m þ dt wgð~Xm; Zr
n;m; dtÞ

to denote the corresponding updating rule of the scheme. R is the number of realizations, N1, the number of

micro-time-steps we make to relax the fast process on the invariant measure lxðdzÞ, and the total number of

micro-time-steps required per macro-time-step is therefore R� N1. Note that the algorithm requires an

initial estimate for fZr
N1�1g

R
r¼1; in the applications, we make sure that this estimate is irrelevant by running

the inner loop on r with a sufficiently large N1 at the first macro-time-step. Subsequently, the value of N1 can

be significantly decreased as explained below.
Generalizations of Algorithm 1 to arbitrary one-step explicit schemes for the macro-solver, time-aver-

aging for the estimator, etc. as well as a discussion of the convergence properties of these algorithms is given

in the Appendix. Here we wish to discuss at a more qualitative level the properties of Algorithm 1 – these

properties will then be tested in practice on L96 in Sections 3–5.
2.2. Consistency

Algorithm 1 is consistent with the limiting equation in (2) as

Dt! 0; dt! 0; and eDt=N1dt! 0: ð11Þ

To understand why the third limit is required, note that if Dt! 0; dt! 0, but Dt=N1dt! d, instead, then
the scheme is consistent with (compare (1))

_X e ¼ 1
R
PR

r¼1 f ðX e; Zr;e; eÞ; X e
t¼0 ¼ x;

_Zr;e ¼ 1
ed gðX

e; Zr;e; eÞ; Zr;e
t¼0 ¼ Zr

N1�1; r ¼ 1; . . . ;R:

(
ð12Þ

This equation converges to (2) in the limit as ed! 0 if (1) converges to (2) in this limit, which explains why

we need eDt=N1dt ¼ ed! 0. In practice we therefore take Dt, dt, and ed sufficiently small to ensure stability

and accuracy.

The consistency conditions in (11) may be somewhat surprising for two reasons: Unlike what we might
have expected at first sight, neither N1dt nor the number of realizations R need to be large for the scheme to

converge. This is of course a good news for the multiscale scheme since the smaller N1 and R, the lower the
cost of the scheme is. Next we elucidate why this can be the case. Notice that in the explanations below it is

crucial that we analyze the properties of the micro-solver/estimator (i.e. the inner loop over r in Algorithm

1) as integrated within the multiscale scheme rather than considered alone.

Consider N1 first. Naively we might think that N1dt needs to be large compared to e because, at each

macro-time-step, the R numerical approximations of the fast process ZeðxÞ must relax to a sample of the

invariant measure lxðdzÞ unbiased by their initial conditions. Yet, on second thought, one realizes that
Algorithm 1 is constructed in such a way that the initial value for Zr

n;m at each macro-time-step is the final

value they reached at the previous macro-time-step. Therefore they already sample l~Xm�1
ðdzÞ initially when

one let them evolve to sample l~Xm
ðdzÞ. And since ~Xm � ~Xm�1 ¼ OðDtÞ, these two measures become closer and

closer as Dt! 0, and relaxation requires less and less micro-time-steps. This explains the constraint

N1dt=Dt� e rather than N1dt� e. We will see below that the same mechanism explains why ensemble-

averaging is superior to time-averaging in terms of efficiency when one assesses the performance of the
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multiscale scheme not in approximating the slow process X (as we do now), but rather in evaluating F ðxÞ at
each macro-time-step.

Consider R next. Clearly, (12) converges to (2) in the limit as e! 0 for arbitrary R, including R ¼ 1. As
explained in Section 1, this is because the effective number of realizations of the fast process turns out to be

proportional to R=Dt because the estimator is used OðDt�1Þ times before the slow variables have changed

significantly. To understand why this is the case from an alternative viewpoint, it is interesting compare

Algorithm 1 with the following one corresponding to a macro-solver using forward Euler with time step

Dt=R and an estimator with 1 realization only. Assuming one updates the values of the slow variables every

R time steps only (i.e. every Dt, just as in Algorithm 1), this can be written as:

Algorithm 2. (Forward Euler macro-solver with time step Dt=R and estimator with 1 realization – no en-

semble-average.)

Take ~X0 ¼ x; ZN1;�1 given; M ¼ bT=Dtc;m ¼ 0;

while m6M
for r ¼ 1; . . . ;R
Z0;r ¼ ZN1;r�1;
for n ¼ 0; 1; . . . ;N1 � 1

Znþ1;r ¼ Zn;r þ dt wgð~Xm; Zn;r; dtÞ
end(for)
~F ð~XmÞ  f ð~Xm; ZN1;rÞ;
~Xm  ~Xm þ Dt

R
~F ð~XmÞ;

end(for)
ZN1;�1  ZN1;R;
~Xmþ1  ~Xm;
m mþ 1;
end(while)

Algorithm 2 is strikingly similar to Algorithm 1. Their cost is identical and, except for the way the fast

variables are initialized, the only difference is that the slow variable ~Xm is updated outside the loop over r in
Algorithm 1, whereas it is updated inside this loop in Algorithm 2. In particular, there is no reason to

believe that Algorithm 1 is more accurate than Algorithm 2 and, in fact, the opposite may be true since
Algorithm 2 uses a smaller (by a factor R) macro-time-step than Algorithm 1. This reduces the discreti-

zation error associated with the macro-solver independently of the error it makes on ~F ðxÞ. Of course, such a

conclusion does not account for other considerations like stability, etc. which may indicate that using more

than one realization is preferable. It is also specific to a macro-solver using forward Euler; for higher order

macro-solvers the optimal number of realizations may be larger than 1 – see the appendix.

2.3. Efficiency

As mentioned before, a detailed discussion of the efficiency of the multiscale scheme in the present

context of chaotic systems is not possible since it would require the convergence properties of numerical

schemes according to weak convergence criteria on infinite time intervals and these are not known. We

speculate on this issue in the appendix by assuming that certain error estimates hold. Here we simply note

that the multiscale scheme is more efficient than a direct solver for (1) because such a direct solver requires

one to compute the evolution of the fast variables on the full time-interval [0; T ], whereas the multiscale

scheme requires one to compute the dynamics of these only on a fraction Dt=N1dt ¼ d�1 of [0; T ] – i.e. the

multiscale scheme is d times more efficient than a direct solver. This efficiency gain is significant when e� 1,
since it is then possible to take d� 1 and at the same time satisfy de� 1 required for accuracy.
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It is instructive to take a closer look at this explanation. Suppose that the limiting process X is much

closer – according to some suitable criterion – to X e than the error tolerance one accepts – if this is not the

case, there is no way out of a direct computation with (1). This means that one can in principle increase the
value of e up to some optimal value eopt so that the discrepancy between X eopt and X e is precisely within error

tolerance. But if one recalls the discussion about consistency at the beginning of this section, one realizes

that the multiscale scheme precisely is a way to implement such a procedure: take R ¼ 1 and

eDt=N1dt ¼ eopt. In other word, the multiscale scheme may be viewed as a seamless way to compute with the

optimal eopt � e consistent with the prescribed error tolerance. Notice that this indicates that the ap-

proximation ~Xn provided by the multiscale scheme may actually be closer to the original process X t
e than the

limiting one, X solution of (2).

From this viewpoint, the multiscale scheme bears some similarity with penalty methods like the one used
in computational fluid dynamics, originally introduced in [4] (see also [5]), or in Car–Parrinello ab-initio

molecular dynamics [3]. In the first method, the hard constraint on incompressibility is relaxed to facilitate

the computation using a slightly compressible velocity field within error tolerance of the incompressible

one. In the ab-initio molecular dynamics, the mass of the electron is artificially increased to reduce the

stiffness of the system.

In fact the multiscale scheme may be viewed as a tool to extend penalty methods to systems where their

application is not obvious at first sight. Indeed, an advantage of the multiscale scheme is that it allows one

to compute with eopt even in systems where it would be difficult or impossible to change explicitly the value
of e in the original equation (recall that we do not explicitly tune up e in Algorithm 1 and eopt only emerges

in the analysis of this algorithm). This will become fully apparent in the next section where we discuss a

seamless version of the multiscale scheme.

2.4. Seamless scheme

Consider (5) appropriately rescaled

_U e ¼ 1

e
hðU e; eÞ; eet¼0 ¼ u; ð13Þ

and suppose that the mapping uðuÞ defining the slow variables X as in (6) is known. A simple seamless

multiscale algorithm to compute the dynamics of the slow variable is then the following:

Algorithm 3. (Seamless scheme with forward Euler macro-solver, unconstrained micro-solver, and esti-

mator by ensemble-average with R realizations.)

Take ~X0 ¼ x; fUN1;�1g
R
r¼1 given and consistent, i.e. uðUr

N1�1Þ ¼ x for all r; M ¼ bT=Dtc;m ¼ 0;

while m6M
~F ð~XmÞ ¼ 0;
for r ¼ 1; . . . ;R
Ur

0;m ¼ Ur
N1;m�1;

for n ¼ 0; 1; . . . ;N1 � 1
Ur

nþ1;m ¼ Ur
n;m þ dt whðUr

n;m; dtÞ;
end(for)
~F ð~XmÞ  ~F ð~XmÞ þ 1

R f ðUr
N1;m
Þ;

end(for)
~Xmþ1 ¼ ~Xm þ Dt ~F ð~XmÞ;
for r ¼ 1; . . . ;R
Ur

0;mþ1 ¼ Ur
N1;m
þ DuTðUr

N1;m
ÞK

[Here K is determined so that uðUr
N1;m
þ DuTðUr

N1;m
ÞKÞ ¼ ~Xmþ1]
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end(for)
m mþ 1;

end(while)

Here Ur
n;m is the approximation of the rth independent realization of Uðt ¼ ndt; x ¼ ~XmÞ provided by the

micro-solver for (9) whose updating rule is denoted as

Ur
nþ1;m ¼ Ur

n;m þ dt whðUr
n;m; dtÞ:

The second loop for r enforces the constraint that uðUr
0;mþ1Þ ¼ ~Xmþ1, i.e., the initial value in the micro-

solver is consistent with the current value of the slow variables. K 2 Rm (same dimensions as the slow

variable X ) needs to be determined in some way, e.g. by iteration of a variant of (18) below.

We show below that Algorithm 3 is consistent with

_Ur ¼ 1

ed
hðUr; eÞ
�

� DuTðUrÞA�1ðUrÞDuðUrÞhðUr; eÞ
�
þ 1

e
DuTðUrÞA�1ðUrÞ 1

R

XR
r0¼1

DuðUr0 ÞhðUr0; eÞ

¼ 1

ed
P hðUr; eÞ � DuTðUrÞA�1ðUrÞ 1

R

XR
r0¼1

f ðUr0 ; eÞ ð14Þ

in the limit as Dt! 0; dt! 0; and Dt=N1dt! d. Here A ¼ DuDuT and P is the following operator mapping

Rp onto Rp:

P ¼ I � DuTA�1Du: ð15Þ

P projects vector fields in the full space to the tangent spaces of level sets of uðuÞ. Notice that as enforced

in Algorithm 3, X ¼ uðUrÞ for all r, and therefore this algorithm is consistent with the following equation

for X :

_X ¼ 1

R

XR
r¼1

f ðUr; eÞ: ð16Þ

Thus (14) gives the same limiting equation for the slow variable X as (5) in the limit as

eDt=N1dt ¼ ed! 0. As for Algorithm 1, R and N1 do not need to be larger than 1 for the scheme to

converge, and a gain in efficiency arises because one can take d� 1 and simultaneously have de� 1. This

last point can also be seen upon rewriting (14) when R ¼ 1 as

_U ¼ 1

ed
hjjðUÞ þ 1

e
h?ðUÞ; ð17Þ

where hjjðUÞ ¼ P hðuÞ and h?ðuÞ ¼ OðeÞ denote the projections of h tangential and perpendicular to

uðuÞ ¼ x, respectively. Thus, for d > 1 Algorithm 3 slows down the dynamics in the direction which does

not affect the evolution of X , effectively introducing an effective eopt ¼ ed > e as discussed before. This leads

to the gain in efficiency. Notice that it also suggests that (17), which was derived from the multiscale scheme

via consistency conditions, may be used as a starting point for other types of theoretical or numerical

analyses. Indeed, given any numerical scheme, (17) can be integrated with a time-step which is d times
bigger than the time-step that one must use for the original Eq. (13). This very interesting observation

allows one to generalize penalty methods to systems like (13); it will be exploited elsewhere.

It is also worth noting that it is not necessary to calculate the forcing f ðuÞ acting on the slow variables a

priori and hard-code it into the program. The finite-difference approximation to the forcing can be obtained

easily once the full system has been propagated by N1=dt micro-time-steps as
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~F ð~XmÞ ¼
XR
r¼1
ðuðUr

N1;m
Þ � ~XmÞ=ðRN1dtÞ:

This approximation is in the spirit of the equation-free techniques developed by Kevrekidis and col-

laborators [15]. It can be very useful if there is no easy access to the equation controlling the full dynamics.

Derivation of (14). This is a standard calculation and the only point worth mentioning is the calculation

of K in the limit of Dt; dt! 0. Since, by definition

~Xmþ1 ¼ u Ur
N1;m

�
þ DuTðUr

N1;m
ÞK
�
¼ u Ur

N1;m�1

�
þ N1dt

e
hðUr

N1;m�1Þ þ DuTðUr
N1;m�1ÞK

�
þ oðdtÞ

¼ ~Xm þ
N1dt
e

DuðUr
N1;m�1ÞhðU

r
N1;m�1Þ þ AðUr

N1;m�1ÞKþ oðdtÞ;

it follows that

K ¼ A�1ðUr
N1;m
Þð~Xmþ1 � ~XmÞ �

N1dt
e

A�1ðUr
N1;m�1ÞDuðU

r
N1;m�1ÞhðU

r
N1;m�1Þ þ oðdtÞ

¼ DtA�1ðUr
N1;m�1Þ

1

R

XR
r0¼1

f ðUr0

N1;m�1Þ �
N1dt
e

A�1ðUr
N1;m�1ÞDuðU

r
N1;m
ÞhðUr

N1;m�1Þ þ oðDt þ dtÞ: ð18Þ

Using this result and matching properly the time-scales, it is straightforward to derive (14).
2.5. Remark on the existence of hidden slow variables

Recall that the slow variables X defined via (8) have a limiting dynamics provided that (5) at e ¼ 0 is

ergodic on the hypersurface where uðuÞ ¼ cst (equivalently if slow and fast variables are explicitly known,
(4) must be ergodic for every x). The question we wish to address here is the following.

Suppose that the slow variables X one identifies in (8) are incomplete, i.e. there exist hidden slow

variables in the system, so that the ergodicity requirement is not met with these variables alone (notice this

can happen with (1) if some combination of the Y ’s turn out to be also slow). What happens with the

seamless multiscale scheme (Algorithm 3) if one uses this incomplete set of X ’s? (14) or (17) give the answer

right away. Such a scheme would slow down artificially the dynamics of the slow variables that are not

included, which of course can affect the evolution of all the slow variables (only the fast variables can be

slowed down with no major effect on the slow ones when e� 1 because of the existence of a limiting
dynamics). Thus, it is crucial in general to include all the slow variables for the multiscale scheme to be

accurate.

It is worth pointing out however that there is one exception where not including a slow variable does not

affect the multiscale scheme. This is the case when this slow variable is piecewise constant in time and

specifies the branch of an ergodic component for (5) at e ¼ 0 if more than one coexist and the number of

branches depends on the values of the slow variables that are identified explicitly. Since such a hidden

variable does not evolve except for jumps that are dictated by the current value of the slow variables ex-

plicitly accounted for in the scheme, it is easy to convince oneself that the multiscale scheme will be accurate
in this case. The numerical experiments reported below suggest that L96 display such piecewise constant

hidden slow variables.

Finally, we note that taking more slow variables than required (i.e. erroneously including fast variables

in the set of the slow ones) does not work either. In this case indeed, the term h?ðuÞ in (17) is Oðe�1Þ (instead
of O(1) with the right choice of slow variable), and therefore to satisfy stability and accuracy criteria this

equation must be solved with as small a time-step as the original Eq. (13).
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2.6. Remark on ensemble- versus time-averaging

The discussion so far indicates that the multiscale scheme is fairly flexible. If evaluating F ðxÞ is one of the
goals of the computation, then using many realizations may be necessary. If on the contrary our only

interest is in the evolution of X , then one realization may be enough. Below we will show how to take

advantage of this flexibility to study L96 via the multiscale scheme. Now we explain why ensemble-aver-

aging is superior to time-averaging if one wants to obtain an accurate estimate of F ðxÞ at each macro-time-

step. Consider the following multiscale algorithm using forward Euler as macro-solver and time-averaging:

Algorithm 4. (Forward Euler macro-solver and estimator by time-average over N micro-time-steps.)
Take ~X0 ¼ x; ZN1�1 given; M ¼ bT=Dtc;m ¼ 0;
while m6M
Z0;m ¼ ZN1;m�1; ~F ð~XmÞ ¼ 0;
for n ¼ 0; 1; . . . ;N1 � 1

Znþ1;m ¼ Zn;m þ dt wgð~Xm; Zn;m; dtÞ;
end(for)
for n ¼ N1; . . . ;N1 þ N � 1

Znþ1;m ¼ Zn;m þ dt wgð~Xm; Zn;m; dtÞ;
~F ð~XmÞ  ~F ð~XmÞ þ 1

N f ð~Xm; Zn;mÞ;
end(for)
~Xmþ1 ¼ ~Xm þ Dt ~F ð~XmÞ;
m mþ 1;
end(while)

Here N1 plays the same role as in Algorithm 1, and N is the number of micro-time-steps over which the

time-average is actually performed; thus, Algorithm 4 requires N1 þ N � 1 micro-time-steps per macro-
time-step. Now compare the costs of Algorithms 1 and 4 as estimators for F ðxÞ.

It is reasonable to assume that the sampling error with Algorithm 1 decreases as 1=
ffiffiffi
R
p

. Therefore, if one

assumes that the macro-time-step is small enough so that the relaxation errors can be neglected for the

reason given before, then one needs R ¼ Oðk�2Þ realizations to achieve an error tolerance k. And the cost of

Algorithm 1, which is N1 � R micro-time-steps per macro-time-step (i.e. per evaluation of F ðxÞ), scales as R.
In contrast the sampling error with Algorithm 4 decreases as 1=

ffiffiffiffiffiffiffiffi
Ndt
p

only (since Ndt is proportional to
the effective number of realizations here), which means that one has to take Ndt ¼ Oðk�2Þ to achieve an

error tolerance k. And the cost of Algorithm 4, which is N1 þ N micro-time-steps per macro-time-step scales
as N . But since dt also has to be taken small to put the discretization errors from the micro-solver within

tolerance, this means that the efficiency of Algorithm 4 deteriorates as dt decreases unlike that of Algorithm

1. Therefore Algorithm 1 beats Algorithm 4 in terms of efficiency in evaluating F ðxÞ accurately at each

macro-time-step as asserted.
3. Application to Lorenz 96 (L96) system

L96 consists of K slow variables fXkgKk¼1 coupled to J � K fast variables fYj; kgðJ ;KÞðj;kÞ¼ð1;1Þ whose evolution is

governed by

_Xk ¼ �Xk�1ðXk�2 � Xkþ1Þ � Xk þ Fx þ hx
J

PJ
j¼1 Yj;k;

_Yj;k ¼ 1
e ð�Yjþ1;kðYjþ2;k � Yj�1;kÞ � Yj;k þ hyXkÞ:

(
ð19Þ
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The system is of the type of (1) (we dropped the subscript e for simplicity of notations). Here both the

Xk’s and the Yj;k’s are assumed to be periodic, i.e. XkþK ¼ Xk and Yj;kþK ¼ Yj;k; YjþJ ;k ¼ Yj;kþ1. L96 was

originally introduced to mimic mid-latitude weather and study the influence of multiple spatio-temporal
scales on the predictability of atmospheric flows. The slow and fast variables Xk and Yj;k represent some

atmospheric quantities discretized respectively into K and K � J sectors along the latitude circle. Each

variable is driven by quadratic nonlinear interaction modeling advection, constant forcing, linear damping,

and coupling between the slow variable in one sector and the J fast variables in the corresponding

subsectors.

L96 was used as a tool to investigate the existence of an effective dynamics for the slow variables alone in

[14,28]. In the following sections we will take this program one step further and use the multiscale scheme to

compute the evolution of the slow variables and their statistics without having to fully resolve the evolution
of the fast ones. This study will both demonstrate the usefulness of the multiscale scheme and as a by-

product give a rather complete characterization of the effective dynamics of the slow modes in L96. For

complementary analysis of the properties of (19) in various parameter settings, we refer to [1,21].

In this section, we will study (19) with Fx ¼ 10; hx ¼ �0:8; hy ¼ 1;K ¼ 9; J ¼ 8; and e ¼ 2�7 ¼ 1=128:
These values of J and e are somewhat different from the ones originally chosen by Lorenz, since J 6¼ 1=e,
but they will serve well our purpose here which is to demonstrate that the multiscale scheme is significantly

more efficient than a direct scheme for (19) when the separation of time-scales is large. In Sections 4 and 5

we will consider situations with J ¼ Oð1=eÞ and J ¼ Oð1=e2Þ, respectively. The value of e ¼ 1=128 is also
such that the dynamics of the slow modes is close to the limiting dynamics obtained as e! 0 – see below.

3.1. Properties of the system and existence of a limiting dynamics

In the parameter setting that we use, the solutions of (19) are chaotic. Typical time-series of a slow

variable Xk and a fast variable Yj;k in the associated sub-sector are shown in Fig. 1; the subplot displays a
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Fig. 1. Typical time-series of the slow (black line) and fast (grey line) modes; K ¼ 9; J ¼ 8; e ¼ 1=128. The subplot displays a typical

snapshot of the slow and fast modes at a given time.
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snapshot of the amplitude of the modes at a given time. The chaotic behavior can be inferred from the high

sensitivity of the system to perturbations in the initial conditions, and further quantified by the statistical

tests described next.
The numerical experiments show that the solutions of (19) settle on an attractor. One way to visualize

(part of) this attractor is to look at the marginal probability density functions (PDFs) of the slow variable

Xk (any k since the PDFs are all identical by symmetry) shown in Fig. 2. The mixing character of the

dynamics can be inferred from the decay in time of the auto-correlation functions (ACFs) defined as

(assuming ergodicity)

Ck;k0 ðtÞ ¼ lim
T!1

1

T

Z T

0

ðXkðt þ sÞ � �X ÞðXk0 ðsÞ � X Þds; ð20Þ

where

�X ¼ lim
T!1

1

T

Z T

0

Xk dt; ð21Þ

and similarly for the fast variables – see Fig. 3. The ACFs of the slow modes Xk can be fit with great

precision by

Ck;kðtÞ � C0 cosðxtÞe�mt; ð22Þ

with appropriate m;x; and C0 � Ck;kð0Þ.
Even though there is a separation of time-scales between the slow evolution of the Xk’s and the fast

evolution of the Yj;k’s since e ¼ 1=128, such separation is not obviously apparent from the correlation

functions of these modes. In particular, Fig. 3 shows that, after a short transient decay, the correlation

function of Yj;k decays and oscillates with about the same rate and frequency as the correlation function of
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Fig. 2. PDF of the slow variable; K ¼ 9; J ¼ 8, black line: e ¼ 1=128, grey line: e ¼ 1=1024. The insensitivity in e of the PDFs indicates

that the slow variables have already converged close to their limiting behavior when e ¼ 1=128.
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Fig. 3. ACFs of the slow (thick line) and fast (thin line) variables; K ¼ 9; J ¼ 8, black line: e ¼ 1=128, grey line: e ¼ 1=1024. The

insensitivity in e of the ACFs for the slow modes indicates that the slow variables have already converged close to their limiting

behavior when e ¼ 1=128. The subplot is the zoom-in of the main graph which shows the transient decay of the ACFs of the fast modes

becoming faster as e is decreased: this is the only signature in the ACFs of the fact that the Yj;k ’s are faster.
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Xk. In fact this short transient decay, which becomes shorter and shorter as e is decreased, is the only

signature on the ACFs that Yj;k is faster. This feature should be taken as a warning against simple procedure

to identify fast modes based on computing their correlation time – here, the correlation time of the Yj;k’s are
comparable to the one of Xk and, in particular, independent of e. In fact, the unambiguous test to determine
if the Y 0j;ks are fast is to compute their ACFs at fixed X ¼ x (i.e. compute the ACFs of the variables Zj;k’s

solution of (23) below). These ACFs decay on a OðeÞ-time-scale.

Next we check the existence of a limiting dynamics for the Xk’s as e! 0. A necessary condition is that

marginal PDFs and correlations functions have a limit as e! 0. This is consistent with the numerical

experiments – see Figs. 2 and 3 and compare black and grey lines. This also indicates that the value we take,

e ¼ 1=128, is small enough so that the statistical properties of the slow variables Xk are very close to their

limit. Now, the existence of a limit for the law of the Xk’s as e! 0 is necessary but not sufficient in order

that these variables also have a limiting dynamics. For this we need to check the ergodicity of the fast
modes at fixed Xk ¼ xk, – i.e. the solution of the following equation corresponding to the Eq. (4) which we

use in the micro-solver of the multiscale scheme:

_Zj;kðxÞ ¼
1

e

�
� Zjþ1;kðxÞðZjþ2;kðxÞ � Zj�1;kðxÞÞ � Zj;kðxÞ þ Fy þ hyxk

�
: ð23Þ

Fig. 4 shows the PDF of

hx
J

XJ
j¼1

Zj;kðxÞ ð24Þ

for some typical values of x. This is the quantity whose average gives the effective forcing. The PDFs of (24)

are robust against variations in initial conditions for Zj;k which confirm the ergodicity of (23). It is however
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Fig. 4. Typical PDFs of the coupling term ðhx=JÞ
PJ

j¼1 Zj;kðxÞ for various values of x. These PDFs are robust against variations in the

initial conditions for (23) indicating that the dynamics of the fast modes conditional on the slow ones being fixed is ergodic. Notice

however how different these PDFs look: this indicates that the feedback of the slow variables Xk on the fast ones Yj;k is significant in
L96.
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worth noting how different these PDFs look for different x, which indicates that the back reaction of the

slow variables Xk on the fast ones Yj;k is significant in L96. This can also be seen in the time-series shown in

Fig. 1: for some values of Xk, the fast variables are locked, whereas they vary widely for other values of Xk.

3.2. Direct-solvers versus the multiscale scheme

For the direct-solver we use the classical fourth-order Runge–Kutta method with time-step dt. We need

to take dt ¼ 2�11 at most for stability, and at this value of dt we achieve reasonable accuracy (i.e. eyeball

insensitivity of the results on the figures under further refinement of dt and changes in initial conditions).

Thus, the direct simulation has a cost, taken as the number of time-steps of the fast variables per unit of

time, given by

costðdirectÞ ¼ b1=dtc ¼ 211 ¼ 2048: ð25Þ

To compute the PDFs and the correlation functions of the slow variables we use a total window of

averaging of T ¼ 218. The PDFs are computed from the time-series by bin-counting. The correlation

functions are computed by direct summation:

Ck;k0 ðmDtÞ ¼
1

M � m

XM�m
m0¼1

Xkðm0DtÞXk0 ððm0 þ mÞDtÞ � �X 2; ð26Þ

where

�X ¼ 1

M

XM
m¼1

XkðmDtÞ; ð27Þ
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and similarly for the fast variables. We do not utilize FFT since in our examples it does not provide sig-

nificant improvements.

For the multiscale scheme we incorporate Algorithm 1 into a time-splitting scheme with a first step for
the nonlinear, damping, and forcing terms in (19) using the fourth-order Runge–Kutta method, and a

second step where Algorithm 1 is used to deal with the coupling term, ðhx=JÞ
PJ

j¼1 Yj;k. The step with the

Runge–Kutta method allows us to take macro-time-steps up to Dt ¼ 2�4 ¼ 1=16 which otherwise would

have to be taken much smaller to achieve stability. We test the multiscale scheme with the various values of

Dt listed in Table 1. For the micro-solver for (23), we use a fourth-order Runge–Kutta with time-step

dt ¼ 2�11 (i.e. the same as in the direct-solver). We check that the multiscale scheme converges and is ac-

curate at the values N1 ¼ 1 (one micro-time-step per macro-time-step) and R ¼ 1 (one realization), but we

also test other values of N1 and R as listed in Table 1. Even though this is in principle unnecessary for L96,
we also use the seamless version by incorporating Algorithm 3 instead of Algorithm 1 in the time-splitting

procedure described above. In all cases we estimate the cost of the multiscale scheme as the number of

micro-time-steps of the fast variables per unit of time:

costðmultiscaleÞ ¼ R� N1 � b1=Dtc: ð28Þ

Even though the multiscale scheme is significantly more efficient than the direct-solver it reproduces

extremely well both the PDFs and the correlations functions of the slow variables. Fig. 5 shows a run with

Dt ¼ 2�7 ¼ 1=128, N1 ¼ 1, and R ¼ 1, for which costðmultiscaleÞ ¼ 27 ¼ 128, and hence the multiscale

scheme is costðdirectÞ=costðmultiscaleÞ ¼ 24 ¼ 16 times more efficient than the direct-solver. And this
happens even though the time series for Xk that we generate with the multiscale scheme is much smaller than

the one we generate in the direct simulations, since Xk is sampled every macro-time-step Dt in the former

case, and every micro-time-step dt in the latter case. This simply means that even though the sample from

the direct-solver is much bigger, it is not more significant statistically due to the large correlation between

the slow variables at successive time-steps dt.

3.3. Effective forcing

The results of the last subsection clearly show that the forcing does not need to be computed accurately

at each macro-time-step (which is the case since we can take R ¼ 1) for the multiscale scheme to apply, as

anticipated from the discussion in Section 2. Now we increase R to R ¼ 4096 (a value at which the mul-
Table 1

Gain in efficiency of the multiscale scheme over a direct solver for various values of the control parameters in the multiscale algorithm

N1 R Dt Gain m Error (%) x Error (%)

e ¼ 2�7 2�11 – 0.135 – 3.81 –

Truncated 2�6 – 0.287 113 3.57 6.3

1 4 2�4 32 0.201 49 3.76 1.3

1 2 2�5 32 0.171 27 3.89 2.1

1 1 2�6 32 0.162 20 3.88 1.9

2 1 2�5 32 0.162 20 3.88 1.9

4 1 2�4 32 0.158 17 3.87 1.6

1 1 2�7 16 0.137 2 3.84 0.8

2 1 2�7 8 0.135 0 3.83 0.5

The error and the gain are calculated relative to the simulation with e ¼ 2�7. The parameters m and x are obtained by fitting as in

(22) the ACF produced by the simulations. Notice that increasing the number of realizations R while keeping the gain fixed actually

increases the error.
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Fig. 5. Comparison between the ACF obtained via the multiscale scheme (black line) and via the direct-solver with e ¼ 1=128 (full grey

line); K ¼ 9; J ¼ 8. The curves are so close that it is difficult to distinguish them. The subplot displays the PDF of the slow mode

obtained via the multiscale scheme (black line) and via the direct-solver with e ¼ 1=128 (full grey line). Here Dt ¼ 2�7 ¼ 1=128;N1 ¼ 1;

and R ¼ 1. Thus costðmultiscaleÞ ¼ 27 ¼ 128 and the multiscale scheme is costðdirectÞ=costðmultiscaleÞ ¼ 24 ¼ 16 times more efficient

than the direct-solver. Also shown in dashed grey are the corresponding ACF and PDF produced by the truncated dynamics where the

coupling of the slow modes Xk with the fast ones, Yj;k , is artificially switched off. The discrepancy indicates that the effect of the fast

modes on the slow ones is significant in L96.
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tiscale scheme is no longer more efficient than a direct scheme when e ¼ 1=128) to compute the effective

forcing

FkðxÞ ¼
hx
J

XJ
j¼1

Z
RJ

zj;klxðdzÞ; ð29Þ

where lxðdzÞ is the invariant measure of (23).

A typical time series of the effective forcing FkðX Þ on mode Xk as it comes out of the inner loop on r in
Algorithm 1 is shown in Fig. 6. Also shown is the time series of Xk itself. Since the effective forcing is the

mean of the PDFs shown in Fig. 4 whose variances may be fairly large in comparison, one sees that the
multiscale scheme does a good job at averaging this term to compute the effective forcing.

The effective forcing FkðxÞ is a vector-valued function of K ¼ 9 variables x ¼ ðx1; . . . ; x9Þ. In practice, it is

not possible to run the simulation for long enough to build a sample of FkðxÞ which would allow one to fit

this function as a whole. (Notice however that the multiscale scheme does not blindly sample FkðxÞ in x
space but instead does it on the dynamical paths; therefore if the slow variables are dynamically constrained

on a smaller subset in state space, like an attractor, the multiscale scheme automatically samples it and only

it without wasting time evaluating FkðxÞ in regions that are not visited by the dynamics anyway). On the

other hand, one may think of making additional assumptions about FkðxÞ, the simplest of which being that
it only depends on the slow variable xk it corresponds to, i.e. FkðxÞ � F ðxkÞ – the next natural approximation

would be to assume that FkðxÞ � F ðxk�1; xkÞ (using the fact that the slow variables sustain wave propagating

primarily from left to right), and so on. Testing FkðxÞ � F ðxkÞ is elementary since it amounts to verifying

that the scatter-plot of FkðX Þ versus Xk defines a function. Such a scatter-plot is shown in Fig. 7, which
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Fig. 6. Typical time-series of the slow variable (grey) and corresponding effective forcing (black) computed via ensemble averaging in

the multiscale scheme with R ¼ 4096 realizations; K ¼ 9; J ¼ 8. The relative smoothness of the black curve indicates that the multiscale

scheme does a good job at computing the effective forcing since this is the mean of the random variable (24) whose variance is large in

comparison – see Fig. 7.

Fig. 7. Black points: scatterplot of the forcing F ðxÞ produced by the multi-scale scheme ðR ¼ 4096Þ. Grey points: scatter plot of the

bare coupling term ðhx=JÞ
PJ

j¼1 Zj;kðxÞ produced by the direct-solver when e ¼ 1=128. K ¼ 9, J ¼ 8. The width of the cloud obtained via

the multiscale scheme indicates that FkðxÞ � F ðxkÞ is a rather bad approximation. In contrast, the width of the cloud obtained via the

direct-solver is more difficult to interpret since it is also due to statistical fluctuation.
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clearly shows that FkðxÞ � F ðxkÞ is a bad approximation. Also shown is the scatter-plot of the bare forcing,

which is even wider since ðhx=JÞ
PJ

j¼1 Yj;k is (for all practical purposes at least) a random quantity – the

width of the cloud now corresponds to statistical fluctuations in ðhx=JÞ
PJ

j¼1 Yj;k which arise independently
on whether its conditional average FkðxÞ depends or not on xk only. This indicates that the multiscale

scheme is useful in checking assumptions on the effective forcing which are more difficult to verify from

direct numerical simulations due to statistical fluctuations.

3.4. Time- versus ensemble-averaging

Here we use time-averaging instead of ensemble-averaging to compute the effective forcing FkðxÞ and
verify the assertion in Section 2 than the latter is more efficient than the former. Thus in the macro-solver
we use Algorithm 4 instead of Algorithm 1. Using N1 ¼ 1 as before, the results show that it is generally (the

precise value depends strongly on x) necessary to take N ¼ 218 ¼ 262144 to obtain a time-series for FkðX Þ as
accurate as the one we got with R ¼ 212 ¼ 4096 using ensemble-averaging. Thus, time-averaging is about 64

times less efficient than ensemble-averaging in the present situation. The explanation for this phenomenon

was given in Section 2 – in essence: with time-averaging, besides relaxing to the attractor, the Zj;k’s have to

revisit it at every macro-time-step, whereas they only need to relax to the attractor with ensemble-aver-

aging. Yet it is useful to corroborate this explanation by looking at the convergence rate of FkðxÞ as a

function of N , as shown in Fig. 8. When the micro-time-step dt is small, N becomes very large since the
physical time of averaging is fixed and independent of dt. Also shown in Fig. 8, is the average of

ðhx=JÞ
PJ

j¼1 Yj;k – i.e. no constraint X ¼ x unlike what happens when one averages ðhx=JÞ
PJ

j¼1 Zj;k in the

multiscale scheme – which shows that constraining the dynamics as the multiscale scheme does it in

the micro-solver is necessary with time-averaging (while it is not with ensemble averaging). Indeed, the
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Fig. 8. Black lines: Typical accumulated time-average of the effective forcing produced by the estimator in the multiscale scheme.

K ¼ 9, J ¼ 8, e ¼ 1=128. Grey line: Typical accumulated time-average of ðhx=JÞ
PJ

j¼1 Yj;k produced by the direct solver at e ¼ 1=128.

The subplot is the zoom-out of the main graph. Since dt ¼ 2�11, corresponds to N ¼ ½t=dt� ¼ 204. Notice that due to the lack of

constraint on the value of Xk in the direct solver, the average starts drifting (because the Xk ’s evolve) before it actually converges. Such

problem does not arise in the multiscale scheme since the dynamics of the fast modes can be constrained fixing Xk ¼ xk in micro-solver.
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averaging time window is so large that, in the absence of constraint, the slow variables Xk significantly drift

before the average converges which eventually would give the complete expectation of ðhx=JÞ
PJ

j¼1 Yj;k
rather than the conditional expectation of this quantity.
4. L96 with spatial scale separation

Here we study L96 (19) in the same parameter setting as in Section 3 except that we take J ¼ 1=e ¼ 128.

Thus there are now 128 fast modes per slow mode, and they evolve 128 times faster. This is closer to the

original parameter setting used by Lorenz. Applying the multiscale scheme directly to this system as we did

in Section 3 would also result in a gain in efficiency by a factor of up to 32 with no significant loss in
accuracy. Here we show that we can significantly increase this gain by using the spatial scale separation in

the system – i.e. the fact that the number of fast variables Yj;k is large. Specifically, we show how to apply the

multiscale scheme by using in the micro-solver a smaller number of fast variables than in the original system

– below 8 instead of 128 per slow mode. As a byproduct of this analysis, we obtain a complete charac-

terization of the effective dynamics of L96 when J ¼ Oð1=eÞ and we show that in this case the original

system in (19) reduces to the following equation for the Xk’s alone as e! 0:

_Xk ¼ �Xk�1ðXk�2 � Xkþ1Þ � Xk þ Fx þ F ðXkÞ: ð30Þ

Here F ðxkÞ is an effective forcing term accounting for the effect of the Yj;k’s on Xk which, in the present case,

is a function depending only on one-variable, namely Xk. The specific shape of F ðxÞ is obtained below.

4.1. Existence and properties of a limiting dynamics

A typical snapshot and time series of the solution are shown in Fig. 9. To check that the dynamics of

slow mode solution of (19) has a limit as e! 0 when J ¼ ½1=e� we proceed as in Section 3.1. First we verify
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Fig. 9. Typical time-series of the slow (black line) and fast (grey line) modes; K ¼ 9, J ¼ 1=e ¼ 128. The subplot displays a typical

snapshot of the slow and fast modes at a given time.
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that PDF and ACF of the slow mode Xk at J ¼ 1=e ¼ 128 and J ¼ 1=e ¼ 256 are very similar which in-

dicate that they have converged to their limit.

Next, we check the ergodicity of (23). Let us take a working assumption that the spatial interaction
between the Yj;k (and hence between the ZjkðxÞ in (23)) are sufficiently weak and short-range on the average.

Then, at any given time, the term ðhx=JÞ
PJ

j¼1 Yj;k (and hence ðhx=JÞ
PJ

j¼1 Zj;kðxÞ) self-averages in the limit as

J !1 (i.e. e! 0 since J ¼ ½1=e�) to a limit which, by the law of large numbers, satisfies

lim
e!0

ehx
X½1=e�
j¼1

Yj;k ¼ hxEXk Yj;k � F ðXkÞ: ð31Þ

Here EXk Yj;k is the conditional average of any given Yj;k at fixed Xk, and under the assumption of weak

spatial interaction between the Yj;k’s, it can only depend on the single Xk entering the equation for Yj;k. Thus
our working assumption implies that FkðxÞ depends only on this Xk, i.e. FkðxÞ ¼ F ðxkÞ. This assumption is of

course non-trivial since the Yj;k’s are nonlinearly coupled. Yet it can be verified from the scatter-plot of

FkðX Þ versus Xk shown in Fig. 10 that this assumption holds with reasonable accuracy since this scatter-plot
is rather sharp (much sharper than the one shown in Fig. 7 when e ¼ 1=128 but J ¼ 8 only). Taking

J ¼ 1=e ¼ 4096 makes it even sharper which supports that this scatter-plot converges to the graph of a

function as J ¼ ½1=e� ! 1. As a further test of (31) we also changed the value of hx from the current value,

hx ¼ �0:8, to hx ¼ 1:2 and we checked that this amounts to a simple rescaling of the scatter-plot by a factor

1.2/(0.8) – see the subplot of Fig. 10.

In Fig. 10, we can see that in the interval Xk 2 ½�0:5; 0:9�, F is a linear function of Xk, whereas for

Xk > 0:9 and Xk < �0:5, F is a two-branch function of Xk: one branch is the continuation of the linear piece

in the center interval and each of the other branches is some nonlinear function of Xk. Further analysis of
Fig. 10. Scatterplots of the bare forcing ehx
P½1=e�

j¼1 Yj;k (no averaging here); light grey: J ¼ 1=e ¼ 128; dark grey:

J ¼ 1=e ¼ 4096 ðK ¼ 9Þ. The sharpness of these graphs confirm that bare forcing self-averages consistent with (31). The subplot:

J ¼ 1=e ¼ 1024, hx ¼ 1:2 (instead of hx ¼ �0:8 taken otherwise); it can be obtained by rescaling the forcing in the main plot respec-

tively by 1.2/()0.8). The thin dashed lines shows the stability band X 2 ð�0:5; 8=9Þ and the corresponding forcing F ðX Þ ¼ hyhxX .
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the dynamics indicates that when Xk leaves the center interval, F first follows the continuation of the linear

branch, then jumps on the other branch. This bifurcation is in fact driven by a linear instability mechanism,

as we explain next.
The simplest way to make sure that Fk ¼ F ðXkÞ is to change the boundary condition for the Yj;k in (19)

and, correspondingly, the Zj;kðxÞ in (23). Instead of taking them periodic over the whole system, i.e.

Yj;kþK ¼ Yj;k, YjþJ ;k ¼ Yj;kþ1, take them periodic in each subsector, i.e. YjþJ ;k ¼ Yj;kþ1. Under the working

assumption above, this should not change anything in the limiting dynamics for the slow variables Xk. With

the new boundary conditions, it is elementary to check that the equation for Zj;kðxÞ in (23) has the following

steady-state solution:

Zj;k ¼ hyXk: ð32Þ

This means that the measure of the Zj;kðxÞ’s and therefore the conditional measure of the Yj;k’s at fixed Xk is

atomic on this value. From (31) it follows that

F ðXkÞ ¼ hxhyXk: ð33Þ

This function fits very well the center branch observed in the scatter-plot shown in Fig. 10. Now, let us
analyze the stability of the steady-state solution (32). A standard eigenvalue analysis of the equation for Zj;k

in (23) linearized around (32) indicates that the eigenvalues are

kj ¼ �2ihyXk expðipj=JÞ sinð3pj=JÞ � 1 j ¼ 1; . . . ; J : ð34Þ

It follows that (32) is stable if ReðkjÞ < 0 or all j and unstable otherwise. As J !1, the stable interval

reduces to Xk ¼ ð�1=2; 8=9Þ. This is again in excellent agreement with the result in Fig. 10.

When (32) is unstable, we did not find any analytical argument which gives the stable branches of F ðXk)

seen in Fig. 10. Next, we use the multiscale scheme to compute these stable branches.
4.2. Multiscale scheme with spatial-scale separation

The discussion in the last subsection indicates that, rather than using the multiscale scheme for (19) with

the original boundary conditions for Yj;k, we should use this equation with the new boundary conditions,

YjþJ ;k ¼ Yj;kþ1. But in this case, the number of fast modes in each subsector can be modified as well, and in

particular, can be taken much smaller than the actual value J ¼ 128. Thus, in the multiscale scheme we

took J 0 ¼ 8 and checked insensitivity of the results by increasing this value to J 0 ¼ 16 (as a theoretical

justification for the value J 0 ¼ 8, note that if J 0 ¼ 8, the stable interval for the linear branch of F ðXkÞ is ()1/
2,1) which is already a fair approximation of the limiting interval ()1/2, 8/9) as J !1).

With the new boundary conditions, there are two obvious ways to implement the multiscale scheme, with
on on-the-fly evaluation of the effective forcing F ðxÞ, or with a tabulation of this function.

4.2.1. Multiscale scheme with on-the-fly evaluation of F (xk)
This proceeds exactly as in Section 3. The effective forcing is computed via the micro-solver and esti-

mator at each time-step. We used Dt ¼ 2�7, dt ¼ 2�11 (same value as in the direct solver for (19) with the

original boundary conditions), N1 ¼ 1, and R ¼ 1. This gives (including the number of fast modes in the

cost since it is different from the one used in the direct simulations)

costðmultiscaleÞ ¼ R� N1 � J 0 � ½1=Dt� ¼ 210 ¼ 1024: ð35Þ

On the other hand, a direct solver for (19) has a cost

costðdirectÞ ¼ J � ½1=dt� ¼ 218; ð36Þ
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Fig. 11. Comparison of ACFs and PDFs (subplot) of the slow mode for various simulations in J ¼ 1=e regime. Light grey: J ¼ 128;

dark grey: J ¼ 256 (practically indistinguishable from the previous one); solid black: result from the multiscale scheme with tabulated

forcing ðJ ¼ 16Þ; dashed black: result from the multiscale scheme with J ¼ 8, Dt ¼ 2�7, N1 ¼ R ¼ 1.

Fig. 12. Dark grey: scatterplots of the bare forcing ehx
P½1=e�

j¼1 Yj;k with J ¼ 1=e ¼ 4096 ðK ¼ 9Þ. Light grey: effective forcing FkðX Þ
produced on-the-fly by the multiscale scheme with K ¼ 9, J ¼ 8, N1 ¼ 1, R ¼ 64, Dt ¼ 2�7. Solid black line: tabulated effective forcing

computed via the multiscale scheme with K ¼ 9, J ¼ 16.
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resulting in a cost(direct)/cost(multiscale)¼ 256 increase in efficiency in favor of the multiscale scheme. Yet,

it can be seen in Fig. 11 that the multiscale scheme performs extremely well in reproducing the functional

dependence of the PDFs and ACFs of Xk. It should also be stressed that the multiscale scheme with R ¼ 1
produces a forcing F ðXkÞ which is only a poor approximation to the asymptotic limit. This can be seen in

the scatterplot shown in Fig. 12. The reason is simple: Since J 0 is rather small in the multiscale algorithm,

the forcing F ðXkÞ does not self-average as in the original equation with J ¼ ½1=e�. This reinforces a point we

already made earlier. A good approximation of the effective forcing at each time-step is not necessary to

obtain a good approximation of the limiting dynamics.

4.2.2. Multiscale scheme with tabulation of F (xk)
In the present situation, the only advantage of using the multiscale scheme in a on-the-fly procedure as

above is that it may be able to capture the hysteresis phenomena by which the fast mode remain metastable

for a while on the unstable linear branch of F ðXkÞ. If one neglects this phenomena, we can simply tabulate

F ðXkÞ once and for all, for instance by saving and processing the data provided by the on-the-fly procedure.

Once F ðXkÞ has been tabulated, one can simply simulate the associated limiting equation for Xk, which

results of course in an even bigger efficiency gain in favor of the multiscale scheme (infinite in fact by the

criterion above since we do not have to simulate the fast variables anymore). We tabulated F ðXkÞ for J ¼ 16

and the results are also presented in Fig. 12. The results of this second procedure in terms of PDF and ACF

for the slow modes, shown in Fig. 11, indicate that the hysteresis phenomena described before has a
negligible influence on these quantities.
5. L96 with hidden slow variables

Even though we tested the seamless version of the multiscale scheme in Sections 3 and 4, the use of the

seamless scheme was avoidable there because slow and fast variables are explicitly separated in the original

set-up of L96. Here we make the seamless version unavoidable by modifying L96 so that it contains hidden
slow variables. The system we will study is:

_Xk ¼ �Xk�1ðXk�2 � Xkþ1Þ � 1ffiffi
J
p
PJ

j¼1ðY 2
j;kþ1 � Y 2

j;k�1Þ;
_Yj;k ¼ � 1

e Yjþ1;kðYjþ2;k � Yj�1;kÞ � 1ffiffiffi
J
p Yi;jðXkþ1 � Xk�1Þ:

8<
: ð37Þ

We will consider these equations when the number J of fast mode scales as e�2. Besides this scaling, the
main difference with (19) is that the coupling between the slow and the fast modes is quadratic in (37)

instead of being linear. We have also dropped the forcing and damping terms in (37). This is unessential but

it allows us to use equilibrium statistical mechanics to analyze (37) and use these results as an additional
benchmark for the numerics. These results, presented next, indicate that as e! 0 with J ¼ Oðe�2Þ ! 1,

(37) lead to a limiting dynamics for Xk and the following additional slow variables (hidden in (37)):

�Bk ¼
1ffiffiffi
J
p

XJ
j¼1

Y 2
j;k: ð38Þ

We start by analyzing the equilibrium statistical properties of (37) then report the results of our nu-

merical experiments.

5.1. Statistical mechanics properties and existence of a limiting dynamics

Due to the absence of forcing and damping in (37), this equation conserves the energy
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E ¼
XK
k¼1

X 2
k

 
þ
XJ
j¼1

Y 2
j;k

!
: ð39Þ

Assuming ergodicity it is reasonable to expect that the invariant measure for system is the uniform
distribution on the surface of constant energy, which is just a sphere. This assumption is consistent with the

numerical results, see Fig. 13. It follows that the marginal probability density of Xk is

qJ ðxÞ ¼ Z�1ðE � x2ÞðKðJþ1Þ�3Þ=2þ ; ð40Þ

where Z is a normalization constant and zþ ¼ maxðz; 0Þ. Assume that E scales as the number of modes in
the system, i.e.

E ¼ KðJ þ 1Þe; ð41Þ

where e is the energy density per mode. Then in the limit as J !1, qðxÞ reduces to a (zero-mean) Gaussian

PDF with variance e:

qJ ðxÞ ! qðxÞ ¼ e�x
2=2effiffiffiffiffiffi
2p
p as J !1: ð42Þ

A similar argument shows that qð�Þ is also the limiting PDF of any Yj;k. By the law of large numbers, this

implies that

1ffiffiffi
J
p

XJ
j¼1

Y 2
j;k ! e as J !1; ð43Þ

whereas, by the central limit theorem, we conclude that the rescaled variables

Bk ¼
1ffiffiffi
J
p

XJ
j¼1

Y 2
j;k

 
� Je

!
; ð44Þ

are Gaussian random variables in the limit as J !1 with zero mean covariance

covðBk;Bk0 Þ ! 2e2dk;k0 : ð45Þ

This is also confirmed by the numerics.

The variables Bk’s are just re-centered versions of the �Bk’s in (38). We claim that the Bk’s are hidden slow

variables in (37). To see this, note that (37) can be written in terms of Xk and Bk as

_Xk ¼ �Xk�1ðXk�2 � Xkþ1Þ � ðBkþ1 � Bk�1Þ;
_Bk ¼ BTkðY Þ � 2 Eþ 1ffiffiffi

J
p BkÞðXkþ1 � Xk�1Þ;

�8<
: ð46Þ

where

BTkðY Þ ¼
2

e
ffiffiffi
J
p ðYJ ;k�1Y1;kY2;k � YJ ;kY1;kþ1Y2;kþ1Þ ð47Þ

is a boundary term accounting for the interaction between the Yj;k between subsectors k. Because of this
term, (46) is not a closed system for (Xk;Bk). But provided that J=e2 ! J0 2 ð0;1Þ as e! 0, one clearly sees

that the term BTkðY Þ is O(1) in amplitude, implying that the variables Bk’s are slow variables comple-

mentary to the Xk’s. In this limit (46) reduces to the following effective system:
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Fig. 13. ACFs and PDFs of Xk . Grey line: direct simulation with e ¼ 1=64, J ¼ 512 ðdt ¼ 2�10Þ; thick solid black line: multiscale

scheme with dt ¼ 2�8, J ¼ 32 (efficiency gain: 64); thin black line: multiscale with dt ¼ 2�7, J ¼ 8 (efficiency gain: 512). Dashed black

line: multiscale scheme with dt ¼ 2�8, J ¼ 32 (efficiency gain: 64) where the hidden slow variables Bk are not accounted for. The

discrepancy clearly indicates that accounting for the Bk ’s is necessary. In all the multiscale computations N1 ¼ R ¼ 1.
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_Xk ¼ �Xk�1ðXk�2 � Xkþ1Þ � ðBkþ1 � Bk�1Þ;
_Bk ¼ FkðX ;BÞ � 2EðXkþ1 � Xk�1Þ;

�
ð48Þ

where the effective forcing FkðX ;BÞ is the average of BTkðY Þ conditional on Xk, Bk being fixed. Eq. (48) also

is the limiting system for (37).

To apply a non-seamless version of the multiscale scheme to (37) would require deriving equations for a
set of variables complementary to the Xk’s and Bk’s, and rewriting (37) in terms of these new variables. This

would be a rather tedious operation to do, which we avoid by using the seamless version of the multiscale

scheme. Moreover we combine this algorithm with the dimension-reduction technique discussed in the

previous section, i.e., in our multiscale simulations we also decrease the value of J to compute the effective

forcing.

5.2. Numerical experiments

The first numerical experiment that we perform is a full-scale direct simulation of (37) with e ¼ 1=64,
J ¼ 1=ð8e2Þ ¼ 512, K ¼ 9. This experiment will serve us as a benchmark for the multiscale simulations. As

before we use the fourth-order Runge–Kutta scheme, but we also take additional precautions to conserve

the energy E. This is achieved by projecting the Xk’s and Yj;k’s onto the sphere of constant energy at every

micro-time-step (note that it is not necessary to do it so often – even without this projection step the energy

is conserved up to 10% throughout the whole computation). The micro-time-step that we use is dt ¼ 2�10.

The results in terms of PDFs and ACFs for Xk are shown in Fig. 13. The Bk’s (not shown) behave similarly.

The seamless multiscale scheme which we use is a modification of Algorithm 3. The microscopic dy-
namics is integrated using the fourth order Runge–Kutta scheme with the same micro-time-step as in the

direct computation, dt ¼ 2�10. We take one realization only, R ¼ 1, and we make one micro-time-step per
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macro-time-step, N1 ¼ 1. For the slow evolution we use a split-step method: fourth order Runge–Kutta

scheme for the nonlinear self-interaction of the slow variables Xk and the forward Euler scheme for coupling

of the latter with the fast variables. The additional slow variables Bk’s are propagated via forward Euler
scheme applied to the second equation in (46). We follow by a projection step where we renormalize the fast

variables Yj;k’s by multiplication so that they lie on energy spheres in y-space consistent with the current

value of the Bk’s, i.e. we update them as

Y new
j;k ¼

�BkPJ
j¼1ðY old

j;k Þ
Y old
j;k ; ð49Þ

where �Bk ¼ Bk þ e=
ffiffiffi
J
p

, see (38) and (44). This step corresponds to the second loop on r in Algorithm 3. In

the present case the nonlinear system of equations which determine K can be solved explicitly and results in

(49). Finally, we make an additional projection step where we renormalize all the variables to ensure that

the total energy E is conserved.

Since the analysis in Section 5.1 shows that the effective dynamics is obtained when J ¼ Oðe�2Þ, in the

multiscale scheme we reduce the number of fast modes as we increase the macro-time-step. Indeed, in-

creasing Dt amounts to increasing the value of e to e0 ¼ eDt=dt (recall that R ¼ N1 ¼ 1), as explained in

Section 2.3. Consistently, we use the multiscale scheme with Dt ¼ 2�8 and J ¼ 32 (corresponding to an
efficiency gain ratio of 64), and with Dt ¼ 2�7 and J ¼ 8 (corresponding to an efficiency gain ratio of 512).

The results are displayed in Fig. 13 and show that the multiscale scheme performs extremely well even at the

highest efficiency gain ratio of 512.

Finally, we also did a multiscale simulation where the Bk’s are not accounted for. The results displayed in

Fig. 13 clearly show that this has a dramatic influence on the PDFs and ACFs which depart significantly

from their actual values in this case. The reason for this failure is actually rather easy to understand. As

explained in Sections 2.3 and 2.5, the multiscale scheme gains in efficiency because in effect it slows down

the fast variables, thereby allowing for a smaller number of micro-time-steps in the computation. But if
some slow variables are not accounted for, the multiscale scheme will slow down these variables as well, and

this will affect the dynamics of all the slow variables. In our case, using the multiscale scheme without

accounting for the Bk’s amounts to slowing down the evolution for the Yj;k by a factor of d ¼ dt=Dt, i.e.
multiplying the second equation in (37) by d. If this happens the conserved quantity E changes to (compare

(39))

~E ¼
XK
k¼1

X 2
k

 
þ d

XJ
j¼1

Y 2
j;k

!
: ð50Þ

Therefore the evolution proceeds on a wrong hypersurface altogether, e.g., the variance of Xk which
would normally be E=KðJ þ 1Þ becomes ~E=KðJ þ 1Þ, with ~E 6¼ ~E determined by the initial conditions. This

is precisely the effect one sees in Fig. 13.
6. Convective versus diffusive time-scales in L96

So far we have used the multiscale scheme on infinite time intervals without worrying about the fact that

the underlying theoretical results assert the existence of an effective equation like (2) for (1) only on finite
time-intervals. The reason why the multiscale scheme was able to capture correctly the long-time behavior

in L96 via PDFs or ACFs was already explained in Section 1. L96 is an intrinsically stochastic system for

which the stochastic corrections in the dynamics arising on the Oðe�1Þ time-scale have a very weak effect on

the long-time dynamics and quantities like the PDFs and ACFs. This is not always the case, though, and
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even L96 can be tuned in a way that the stochastic corrections arising on the Oðe�1Þ time-scale do matter.

How to deal with situations of this sort and use the multiscale scheme is the subject of this section.

Consider the same generic model (1) with an additional property that the expectation in (3) is of order e, i.e.Z
Rn
f ðx; zÞlxðdzÞ ¼ e�F ðxÞ; ð51Þ

where �F is some function O(1) in e. Eq. (51) implies that the slow variable is frozen on the O(1) time-scale

and the interesting dynamics arises on the Oðe�1Þ time-scale. However, this dynamics is not captured by the

limiting equation _X ¼ e~F ðX Þ. The reason is that stochastic effects arising due to fluctuations of the effective

forcing around its mean value (51) must be accounted for, and it can be shown [17,18,26,27] that the ef-

fective dynamics is in fact captured by a stochastic differential equation

�X ¼ ebðX Þ þ
ffiffi
e
p

rðX Þ _W ðtÞ; ð52Þ

where W ðtÞ is the standard multi-dimensional Wiener process, and the coefficients b and r are defined via

expectations similar to (though more general than) (51). Note that rescaling time as s ¼ et, (52) can be

written as

_X ðsÞ ¼ bðX ðsÞÞ þ rðX ðsÞÞ _W ðsÞ: ð53Þ

A general multiscale procedure to compute the coefficients b and r via micro-simulation of the full
system in (1) is given in [30] (see also [9]). Here we show how to bypass this procedure using a poor man’s

version of the multiscale scheme much in the spirit of the penalty methods discussed in Section 2.3. The

existence of the effective equation in (53) actually means that, when (51) is satisfied, the solution of the

original system and the solution of (53) satisfy

sup
06 s6 T

jEuðX eðs=eÞÞ � EuðX ðsÞÞj ! 0 as e! 0; ð54Þ

where u is a test function and E denotes the expectation with respect to some appropriate measures. In
turns this implies that the solutions of the original equation in (1) computed at two different values of e, say,
e and e0, satisfy

sup
06 s6 T

jEuðX eðs=eÞÞ � EuðX e0 ðse0ÞÞj ! 0; as e; e0 ! 0: ð55Þ

Note the specific rescaling of time in (55) which involves the actual values of e and is different for X e and X e0 .
Eq. (54) implies that

X eðtÞ � X e0 ðte=e0Þ ð56Þ

provided that e and e0 are both sufficiently small.

The idea of a poor man’s multiscale scheme for situations of this type is as follows. Since e is small in the

original equation, we can satisfy e� e0 � 1 and still be in the range where (56) holds. But simulating (1)

with the new e0 is then much less expensive than with the original e. This results in efficiency gains that may
not be as dramatic as what one can obtain by a full multiscale scheme where the coefficients b and r are

evaluated via micro-simulations. Yet this seamless way to implement a multiscale scheme has the advantage

of its great simplicity. Next we demonstrate this on a variant of L96.

Consider

_Xk ¼ �eðXk�1ðXk�2 � Xkþ1Þ þ XkÞ þ hx
J

PJ
j¼1ðYj;kþ1 � Yj;k�1Þ;

_Y ¼ 1
e ð�Yjþ1;kðYjþ2;k � Yj�1;kÞ � Yj;k þ FyÞ þ hyXk:

(
ð57Þ
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Fig. 14. ACFs and PDFs (subplot) of the slow variable Xk evolving under (57). Grey line: e ¼ 1=256; full black line: e ¼ 1=128; dashed

black line: e ¼ 1=128 with time rescaled as t ! 2t consistent with (56). The near perfect match confirms that evolution of Xk converges

to some limiting dynamics on the Oð1=eÞ time-scale.
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With this specific scaling of the nonlinear terms in the equation for Xk, and of the coupling term with Xk

in the equation for Yj;k, we guarantee that (51) is satisfied. Indeed, the conditional measure entering (51)

does not depend on x since the equation used in the microsolver is

_Zj;k ¼
1

e
ð�Zjþ1;kðZjþ2;k � Zj�1;kÞ � Zj;k þ FyÞ: ð58Þ

In addition the statistics of Zj;k does not depend on k by periodicity and therefore the conditional av-

erages of Yj;kþ1 and Yj;k1 at x fixed are the same, and the correspond term involving their difference in (57)
cancels to leading order.

We study (57) by the multiscale scheme described above by performing two simulations with J ¼ 2,

K ¼ 4, Fy ¼ 10, hx ¼ �0:8, Hy ¼ 1, and e ¼ 1=256 and 1/128, and comparing the solution using the proper

rescaling of time given in (56). The results are displayed in Fig. 14 and show the almost perfect agreement in

PDFs and ACFs. The simulation with e ¼ 1=128 is performed with a micro-time-step which is twice as big

as the one used in the simulation with e ¼ 1=256 and therefore corresponds to an efficiency gain ratio of 2.

Notice that, in the present situation, the use of the multiscale scheme can be bypassed since the dependency

in e is explicit in (57). But this need not be the case, and the poor man’s multiscale scheme used here can be
straightforwardly generalized to systems such as the one considered in Section 5 which contain hidden slow

variables.
7. Concluding remarks

We have investigated a class of numerical schemes which fit within the general framework of the Het-

erogeneous Multiscale Method and allow for significant computational gain in efficiency in systems with
multiple spatio-temporal scales. We have applied these schemes on the example of L96 which is the
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prototype of a (moderately) large deterministic system displaying chaotic behavior. While precise error

estimates are not currently available for systems of this type, we have shown that the analysis of the

multiscale scheme in terms of its consistency with specific dynamical equations allows a rather complete
understanding of the efficiency of the method in terms of the numerical parameters used. This analysis was

made in general and confirmed for the specific example of L96. For this example, it was shown that the

multiscale scheme can be adapted and improved by utilizing specific properties of the system so as to

achieve not only considerable gain in efficiency in the computations, but also good understanding of the

properties of limiting equations for the slow modes in L96. We believe that a similar strategy may be useful

in more realistic examples arising from the atmospheric sciences, molecular dynamics, etc. which display the

same type of multi-scale characteristic as L96 and pose similar computational and theoretical challenges.
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Appendix A. More algorithms and speculative error estimates

Here we give specific multiscale algorithms and assess their performance. For simplicity we focus on

using one-step explicit schemes with fixed time-steps for both the macro- and the micro-solver. The gen-

eralization to variable time-steps, or explicit multi-step schemes is straightforward; the generalization to

implicit schemes for the micro-solver is straightforward as well, but using implicit schemes as macro-solver

is more involved and should probably be avoided if possible. We also speculate on the performance of

various estimators and insist on distinguishing (i) the error the estimator makes on evaluating F ðxÞ at each
macro-time-step, and (ii) the error it induces on the slow variable evolution. We focus on using the en-

semble-average as estimator; similar error estimates can be derived if time-averaging is used [9]. We stress

that the error estimates given below are speculative in the sense that they depend on the convergence

properties of the macro- and micro-solvers on infinite time-intervals, which we shall assume are well-be-

haved and known. Under these assumptions, the statements below can be proven following the lines of [9]

and we refer the reader to this paper for details.

A.1. Algorithms

The generalization of Algorithm 1 to a multiscale scheme where the macro-solver uses a Q-stage one-step

method with Butcher coefficients aq;q0 and bq can be written as:

Algorithm 5. (Q-macro-stage one-step macro-solver)
Take ~X0 ¼ x; M ¼ dT=Dte; m ¼ 0;

while m6M ;
~XH

0 ¼ ~Xm;

for q ¼ 0; 1; :::;Q� 1

call ~F ð~XH

q Þ
~XH

qþ1 ¼ ~XH

q þ Dt
Pq

q0¼0 aq;q0 ~F ð~XH

q 0Þ;
end(for)
call ~F ð~XH

Q Þ
~Xmþ1 ¼ ~Xm þ Dt

PQ
q¼0 bq~F ð~XH

q Þ;



I. Fatkullin, E. Vanden-Eijnden / Journal of Computational Physics 200 (2004) 605–638 635
m mþ 1;

end(while)

Here the function ~F ðxÞ invokes a subroutine which contains both the micro- solver and the estimator and

can be integrated into the following subroutines to evaluate ~F ðxÞ via ensemble-averaging:

Algorithm 6. (micro-solver with estimator by ensemble-averaging)
function ~F ð~XmÞ
given ~Xm; fZr

N1;m�1g
R
r¼1:

for r ¼ 1; . . . ;R
Zr
0;m ¼ Zr

N1;m�1;

for n ¼ 0; 1; . . . ;N1 � 1
Zr
nþ1;m ¼ Zr

n;m þ dtwgð~Xm; Zr
n;m; dtÞ;

end(for)
~F ð~XmÞ  ~F ð~XmÞ þ 1

R f ð~Xm; Zr
N1;m
Þ;

end(for)
return ~F ð~XmÞ; fZr

N1;m
gRr¼1.

It is also straightforward to implement a Q-stage generalization of the seamless algorithm (3). In this

case one has to use the same procedure as described in (Section 2.4) to obtain the values of Ur at every
intermediate point and therefrom calculate the macroscopic forcing and advance the slow variables.

A.2. Error estimates

A.2.1. Macro-solver

Let Xm be the numerical approximation of Xt¼mDt provided by Algorithm 5 with the exact F ðxÞ. We will

assume that a weak error estimate of the following type holds: for all test functions gðxÞ within a suitable

class, there exists a > 0 such that for Dt sufficiently small

lim
M!1

1

M

XM
m¼1

gðXmÞ
					 �

Z
Rm

gðxÞlðdxÞ
					6CDta; ðA:1Þ

where lðdxÞ is the invariant measure of the limiting equation in (2) (assuming it exists) and C is a generic

constant. The exponent a depends on the macro-scheme, and may be less than the order of accuracy of the

method over finite time-interval [29]. Thus (A.1) assumes that both the limiting equation for X in (2) and

the macro-solver are ergodic; the criterion (A.1) is then tailored for assessing the performance of the scheme

in approximating moments of lðdxÞ (in the context of SDEs, a scheme satisfying (A.1) is said to converge

with respect to the ergodic criterion with order a [16]). Such a criterion is appropriate in the context of
systems like L96 where both the original and the effective dynamics display deterministic chaos and for

which a detailed description of a given trajectory is therefore only possible on a rather short interval of

time. Of course, if such description on a short time-interval is of interest, the criterion in (A.1) can be

changed into a standard ODE error estimate whose order of accuracy then simply is the order of the macro-

solver; the discussion below can be straightforwardly adapted to this case.

When (A.1) holds, it is a general result of HMM [7] that the error estimate for Algorithm 5 is then

lim
M!1

1

M

XM
r¼1

gð~XmÞ
					 �

Z
Rm

gðxÞlðdxÞ
					6CðDta þ eðHMMÞÞ; ðA:2Þ
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where eðHMMÞ is an additional term accounting for the errors from the micro-solver and the estimator,

which we evaluate next.

A.2.2. Estimator

Denote by ~F ðx; zÞ the approximation of F ðxÞ provided by estimating (3) by time-averaging, i.e.

~F ðx; zÞ ¼ 1

R

XR
r¼1

f ðx; Zr
N1
ðx; zÞ; eÞ; ðA:3Þ

where N1 and R are as in Algorithm 6, and we have indicated explicitly the dependency of ~F ðx; zÞ and Znðx; zÞ
on the initial conditions for the micro-solver, i.e. Zn¼0ðx; zÞ ¼ z, since they affect the error estimates we give

next.
To assess the performance of the estimator integrated within the multiscale scheme, we introduce the

following error estimate for (A.3) which would be standard in the context of SDEs. We assume that

there exist b > 0 such that for e, Dx, and dt small enough, and N1 and N , with N1 < N , large enough, we

have Z
j~F ðx; zÞ � F eðxÞjlxþDxðdzÞlðdxÞ6C ðdt=eÞb

�
þ Dxe�

�CN1dt=e þ 1ffiffiffi
R
p

�
; ðA:4Þ

where C; �C are generic constants. Eq. (A.4) assume that measure lxðdzÞ is weakly Lipschitz in x
(i.e.

R m
R
gðzÞlxðdzÞ is Lipschitz in x for all test functions g). The origin of the various terms at the right hand-

side in these estimates is as follows.

The first term accounts for the discretization errors from the micro-solver and it is assumed that the

micro-solver converges with respect to the ergodic criterion of order b.
The second term accounts for relaxation errors from the initial condition used in the micro-solver. This is

a property of the dynamics, not of the solver; here it is assumed that the relaxation is exponential, though

this is not essential and a slower algebraic decay would suffice. What is essential is that Dx is small in (A.4);

this amounts to assuming that the initial condition for the micro-solver is Z0ðxþ Dx; zÞ, i.e. it is sampled

from the measure lxþDxðdzÞ which is very close to the one entering the definition of F eðxÞ. This is precisely
what happens if one combines Algorithm 5 with 6 since the initial conditions for the fast variables at the

next call of these subroutines is their final values from the last call, i.e. they already sample l~Xm�1
ðdzÞ initially

when one let them evolve to sample l~Xm
ðdzÞ, and ~Xm � ~Xm�1 ¼ OðDtÞ.

Finally, the last term account for finite sampling effects. Unlike the first two terms, for standard SDEs
this term disappears if the absolute value in (A.4) is taken outside instead of inside the integral; we shall

assume that this is also the case in the present context.

A.2.3. HMM

It is shown in [9] that an estimate like (A.4) is the essential information needed to evaluate eðHMMÞ in
(A.2). In particular, Algorithm 5 combined with Algorithm 6 leads to

eðHMMÞ ¼ C ðdt=eÞb
�

þ Dt e�
�CN1dt=e þ Dt

R

�
: ðA:5Þ

We have already explained why the term accounting for relaxation error in these estimates is propor-

tional to Dt. Note also that the sampling error term enters squared compared with (A.4), and with an

additional Dt, which confirms that the effective number of realizations is R=Dt, i.e. the scheme converges as

Dt! 0 even if R ¼ 1.
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A.3. Efficiency

From (A.2) and (A.5) one sees that the optimal cost of the multiscale scheme, taken as the total number

of micro-time-steps, at error tolerance k� 1 is

cost ¼ TQRN1

Dt
¼ Oðk�minf1=a;1g�1=b log k�1Þ; ðA:6Þ

the choice of parameters leading to this estimate is

Dt ¼ Oðk1=aÞ; dt ¼ Oðek1=bÞ; N1 ¼ Oðk1=b log k�1Þ; R ¼ Oðkmaxf1=a�1;0gÞ: ðA:7Þ

Note that, for a6 1, the optimal number of realizations is R ¼ 1; for a > 1, it scales as k1=a�1. Notice also

that the cost is independent of e, which explains why the multiscale scheme is more efficient than a direct

scheme for (1).
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